随着人工智能技术的蓬勃发展,Transformer模型的影响力和应用范围也在不断扩大。这个改变游戏规则的模型已经成为学界与业界探索新技术的关键。面对这一趋势,迅速掌握并应用Transformer将极大增强个人的行业竞争力,为未来的人工智能发展打下坚实的基础。 返回搜狐,查看更多 ...
在本文中,我们将详细探讨目标检测,介绍视觉Transformer的强大功能,并通过一个实际项目逐步演示如何使用ViT进行目标检测。 目标检测是计算机视觉中的一项核心任务,推动了从自动驾驶汽车到实时视频监控等技术的发展。它涉及在图像中检测和定位物体 ...
You can create a release to package software, along with release notes and links to binary files, for other people to use. Learn more about releases in our docs.
Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, ...
Abstract: Recently Vision Transformer (ViT) and Convolution Neural Network (CNN) start to emerge as a hybrid deep architecture with better model capacity, generalization, and latency trade-off. Most ...
In 2017, a significant change reshaped Artificial Intelligence (AI). A paper titled Attention Is All You Need introduced ...
Recently, several methods have adopted the vision Transformer (ViT) in FGVC tasks since the data specificity of the multihead self-attention (MSA) mechanism in ViT is beneficial for extracting ...
使用PyTorch 从头开始实现 ViT模型代码,在 CIFAR-10 数据集上训练ViT模型 以完成图像分类。 ViT的架构 ViT 的架构受到 BERT 的启发,BERT 是一种仅编码器的 transformer 模型,通常用于文本分类或命名实体识别等 NLP 监督学习任务。ViT 背后的主要思想是,图像可以看作是 ...